Privacy-CNH: A Framework to Detect Photo Privacy with Convolutional Neural Network using Hierarchical Features

نویسندگان

  • Lam Tran
  • Deguang Kong
  • Hongxia Jin
  • Ji Liu
چکیده

Photo privacy is a very important problem in the digital age where photos are commonly shared on social networking sites and mobile devices. The main challenge in photo privacy detection is how to generate discriminant features to accurately detect privacy at risk photos. Existing photo privacy detection works, which rely on low-level vision features, are non-informative to the users regarding what privacy information is leaked from their photos. In this paper, we propose a new framework called PrivacyCNH that utilizes hierarchical features which include both object and convolutional features in a deep learning model to detect privacy at risk photos. The generation of object features enables our model to better inform the users about the reason why a photo has privacy risk. The combination of convolutional and object features provide a richer model to understand photo privacy from different aspects, thus improving photo privacy detection accuracy. Experimental results demonstrate that the proposed model outperforms the state-of-the-art work and the standard convolutional neural network (CNN) with convolutional features on photo privacy

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A centralized privacy-preserving framework for online social networks

There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...

متن کامل

A Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI

Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...

متن کامل

PrivyNet: A Flexible Framework for Privacy-Preserving Deep Neural Network Training

Massive data exist among user local platforms that usually cannot support deep neural network (DNN) training due to computation and storage resource constraints. Cloud-based training schemes can provide beneficial services, but rely on excessive user data collection, which can lead to potential privacy risks and violations. In this paper, we propose PrivyNet, a flexible framework to enable DNN ...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016